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Disjoint set union (Union-Find)

Devise a data structure for an intermixed 
sequence of the following kinds of operations:

make-set(x) (x in no set): create a set {x}, with 
root x.

find(x): (x in a set): return the root of the set 
containing x.

unite(x, y): if x and y are in the same set, return 
false; otherwise combine the sets containing x
and y into a single set, choose an element as 
the root of the new set, and return true.



Each element is in at most one set (sets are 
disjoint): equivalence relation on elements

The root of a set serves to identify it, can store 
information about the set (size, name, etc.)

Implementation can choose each set root

Applications

Global greedy MST algorithm (Kruskal)

FORTRAN compilers: COMMON and 
EQUIVALENCE statements

Incremental connected components

Percolation



Disjoint set implementation

Represent each set by a rooted tree, whose 
nodes are the elements of the set, with the 
set root the tree root, and each node x having 
a pointer to its parent x.p.  Store information 
about set (such as name) in root.

The shape of the tree is arbitrary.

n = #elements, m = #finds, n > 1, n = O(m)



Set operations

make-set(x): make x the root of a new one-node 
tree: x.p x

find(x): follow parent pointers from x to the 
root: 

if x.p = x then return x else return find(x.p)

unite(x, y): v find(v); w find(y);

if v = w then return false

else {link(v, w); return true}

link(v, w): v.p w (or w.p v)



A bad sequence of unites can create a tree that 
is a path of n nodes, on which each find can 
take Ω(n) time, totaling Ω(mn) time for m finds

Goal: reduce the amortized time per find: 
reduce node depths

Improve unites: linking by size or by rank

Improve finds: compact the trees



Linking by size: maintain the number of nodes in 
each tree (store in root). Link root of smaller 
tree to larger.  Break a tie arbitrarily.

make-set(x): {x.p  x; x.s 1}

link(x, y):

if x.s < y.s then{x.p y; y.s y.s + x.s}   

else {y.p x; x.s x.s + y.s}



Linking by rank: Maintain an integer rank for each 
root, initially 0.  Link root of smaller rank to root 
of larger rank.  If tie, increase rank of new root by 
1.

make-set(x): {x.p x; x.r 0}

link(x, y): {if x.r = y.r then y.r y.r + 1;

if x.r < y.r then x.p y else y.p x}

x.r = height of x



Linking by index: Assume nodes are totally 
ordered.  Link smaller root to larger. 

make-set(x): {x.p x}

link(x, y): {if x < y then x.p y else y.p x}



Linking by size and linking by rank have similar 
efficiency.  Linking by rank needs fewer bits 
(lglgn for rank vs. lgn for size) and less time.

For any x, x.r < x.p.r

#(nodes of rank ≥k) ≤ n/2k

→ x.r ≤ lgn, find(x) takes O(lgn) time  



Path compression

During each find, make the root the parent of each 
node on the find path:

find(x): if x.p.p  x.p then x.p find(x.p);   

return x.p

Compression takes two passes over the find path



Path splitting

During each find, make each node point to its 
grandparent:

find(x): {u x;
while u.p.p ≠ u.p do

{v u.p; u.p u.p.p; u v};
return u.p}

Only one pass over find path

Alternative: make every other node point to its parent 
(path halving)
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Do both finds during a unite concurrently, stop 
when one reaches a root (or both reach nearest 
common ancestor).  Make the root a child of the 
current node on the other path.

How to interleave finds?  

If nodes are totally ordered, always step to 
smaller node.   

Eager Linking
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Rem’s algorithm: splicing

Compression or splitting with eager linking?

Yes

Or splice: when taking a step from a node, 
change its parent to the current node on the 
other path

Can do eager linking (& splicing) by rank



unite by index with splicing

unite(x, y):
{v x; w y;
while v.p ≠ w.p do

{if v.p > w.p then v↔ w;
u v.p;
v.p w.p;
if v = u then return true
else v u}; 

return false}
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Path compression with linking by size
(or rank)

History of bounds (amortized time per find)

1971 O(1) (false)

1972 O(lglgn) M. Fisher

1973 O(lg*n) Hopcroft & Ullman

1975 Θ(α(n, m/n)) Tarjan

later  Ω(lglgn) (false)

2005 top-down analysis Seidel & Sharir



Ackermann’s function
(Péter & Robinson)

A(0, j) = j + 1

A(k,0) = A(k – 1, 1)

A(k, j) = A(k – 1, A(k, j – 1)) if k > 0, j > 0

A(1, j) = j + 2, A(2, j) = 2j + 3, A(3, j) > 2j, A(4, j) > 
tower of j 2’s, A(4, 2) has 19,729 decimal digits

A(k, j) is strictly increasing in both arguments

α(r, d) = min{k > 0|A(k, [d]) > r} 



Beautiful Theory…
but Practice?

Experiments: Patwary, Blair, and Manne (2010)

Implementation of Kruskal’s algorithm: only 

unites

Two classes of random graphs, and “real-world” 

graphs



Results

Linking by index with splicing or splitting 
generally best, though by small amounts.

???

Why doesn’t linking by rank (or size) help in 
practice? 



Randomized linking

Number the elements from 1 to n uniformly at 
random, then do linking by index, or eager 
linking by index.

Hypothesis: This is what the experiments did, in 
effect, on at least the random instances.

May come for free, e. g. if the node names are 
hashed. 



Equivalent to linking probabilistically by size, not

by flipping a fair coin (50-50 linking).

(Cannot do either eagerly.)



Results
Randomized linking or randomized eager linking 
with compression, splicing, or halving, and 
randomized eager linking with splicing, take 
expected amortized O(α(n, m/n)) time per find.

Tight by Fredman-Saks lower bound.

Not true for 50-50 linking.  (We think we have a 

proof.)  



Key Idea 

How to define rank?

Obvious idea: rank = height in tree built by links 
with no compaction

Doesn’t seem to handle splicing (not monotonic 
in node numbers)

Harder to analyze than our solution



Want:

(i) ranks monotonic in node numbers

(ii) #(nodes of rank ≥ k) ≤ n/2k

Solution: give nodes 1 through n/2 rank 0, 

n/2 + 1 through 3n/4 rank 1,

3n/4 +1 through 7n/8 rank 2…

(i)  True → x.r ≤ x.p.r (vs. x.r < x.p.r)

(ii) True 

(iii) For any node, at least half of higher nodes have 

strictly higher rank



Idea of Analysis

Apply an existing analysis of linking by rank to 
handle nodes x on find paths with x.r < x.p.r

Bound # nodes x on find paths with x.r = x.p.r

Lemma: For any x, expected # proper ancestors 
of x of same rank (in tree built by links with no 
compaction) ≤ 2



Proof of lemma: Given a sequence σ of unites
and an element x, reorder σ into σ(x): next unite
adds an element to the set containing x, 
breaking ties in order by σ.

With linking by index, σ-ancestors of x are a 
subset of σ(x)-ancestors of x;

With early linking by index, ancestor sets are the 
same: use recursive characterization of σ(x)



Assume σ = π ◊ ρ, unite(v, w)

where π builds S containing x, ρ builds R,

v in S, w in R, ◊ is arbitrary interleaving 

Then σ(x) = π(x), unite(v, w), ρ(w)

(No unite in ρ has a node in S other than v as an 
input)     



Let u be the root of the current tree containing 
x.

Next node u’ added to tree has at least ½ chance 
of having rank greater than u.x, given that u’ > u, 
by (iii)

→ expected #proper ancestors of same rank as x

≤ ½ + ½ + ⅜ + ¼ +… ≤ 2

→ expected #nodes on find paths with parent of  

same rank =O(n)   



Splicing

New parent of a node not necessarily an 
ancestor

Define zero-level potential of x = # proper 
ancestors of same rank: expected total over all 
nodes = O(n)

For splitting, need a window of 3 nodes to 
analyze find path.  For splicing, window is 6



You too can learn/teach the α
bound!



We define x.a, x.b, and x.c, the level, index, and 
count of x, as follows: 

x.a = max{0, max{k|A(k, x.r) ≤ x.p.r}}

x.b = max{0, max{j|A(x.a + 1, j) ≤ x.p.r}}

x.c = x.a × x.r + x.b

A(α(n, 0), 0) > n → x.a < α(n, 0)

A(x.a + 1, x.r) > x.p.r → x.b < x.r

Σx.c = O(nα(n, 0))



Lemma: If x is followed by y on a find path with

0 < x.r < x.p.r and y.r < y.p.r and x.a = y.a, then 
compression of the find path increases x.c.

Proof: A(x.a + 1, x.b + 1) = A(x.a, A(x.a + 1, x.b)

≤ A(x.a, x.p.r) = A(y.a, x.p.r)

≤ A(y.a, y.r) ≤ y.p.r

Hence the increase in x.p.r to at least y.p.r
increases x.a and hence x.c, or does not change 
x.a but increases x.b, again increasing x.c



We are still learning…



Thanks!


