
Disjoint Set Union
via Compressed Trees

(with Randomized Linking)

A. Goel, S. Khanna, D. Larkin,& R.
Tarjan

Disjoint set union (Union-Find)

Devise a data structure for an intermixed
sequence of the following kinds of operations:

make-set(x) (x in no set): create a set {x}, with
root x.

find(x): (x in a set): return the root of the set
containing x.

unite(x, y): if x and y are in the same set, return
false; otherwise combine the sets containing x
and y into a single set, choose an element as
the root of the new set, and return true.

Each element is in at most one set (sets are
disjoint): equivalence relation on elements

The root of a set serves to identify it, can store
information about the set (size, name, etc.)

Implementation can choose each set root

Applications

Global greedy MST algorithm (Kruskal)

FORTRAN compilers: COMMON and
EQUIVALENCE statements

Incremental connected components

Percolation

Disjoint set implementation

Represent each set by a rooted tree, whose
nodes are the elements of the set, with the
set root the tree root, and each node x having
a pointer to its parent x.p. Store information
about set (such as name) in root.

The shape of the tree is arbitrary.

n = #elements, m = #finds, n > 1, n = O(m)

Set operations

make-set(x): make x the root of a new one-node
tree: x.p x

find(x): follow parent pointers from x to the
root:

if x.p = x then return x else return find(x.p)

unite(x, y): v find(v); w find(y);

if v = w then return false

else {link(v, w); return true}

link(v, w): v.p w (or w.p v)

A bad sequence of unites can create a tree that
is a path of n nodes, on which each find can
take Ω(n) time, totaling Ω(mn) time for m finds

Goal: reduce the amortized time per find:
reduce node depths

Improve unites: linking by size or by rank

Improve finds: compact the trees

Linking by size: maintain the number of nodes in
each tree (store in root). Link root of smaller
tree to larger. Break a tie arbitrarily.

make-set(x): {x.p  x; x.s 1}

link(x, y):

if x.s < y.s then{x.p y; y.s y.s + x.s}

else {y.p x; x.s x.s + y.s}

Linking by rank: Maintain an integer rank for each
root, initially 0. Link root of smaller rank to root
of larger rank. If tie, increase rank of new root by
1.

make-set(x): {x.p x; x.r 0}

link(x, y): {if x.r = y.r then y.r y.r + 1;

if x.r < y.r then x.p y else y.p x}

x.r = height of x

Linking by index: Assume nodes are totally
ordered. Link smaller root to larger.

make-set(x): {x.p x}

link(x, y): {if x < y then x.p y else y.p x}

Linking by size and linking by rank have similar
efficiency. Linking by rank needs fewer bits
(lglgn for rank vs. lgn for size) and less time.

For any x, x.r < x.p.r

#(nodes of rank ≥k) ≤ n/2k

→ x.r ≤ lgn, find(x) takes O(lgn) time

Path compression

During each find, make the root the parent of each
node on the find path:

find(x): if x.p.p  x.p then x.p find(x.p);

return x.p

Compression takes two passes over the find path

Path splitting

During each find, make each node point to its
grandparent:

find(x): {u x;
while u.p.p ≠ u.p do

{v u.p; u.p u.p.p; u v};
return u.p}

Only one pass over find path

Alternative: make every other node point to its parent
(path halving)

10

8

5

2

1

7

3 4

10

8

5

2

1

7

3 4

Compression

10

85 7

3 4

21

Compression

10

8

5

2

1

7

3 4

10

8

5

2

1

7

3 4

Splitting

10

85

21

7

3 4

Splitting

Do both finds during a unite concurrently, stop
when one reaches a root (or both reach nearest
common ancestor). Make the root a child of the
current node on the other path.

How to interleave finds?

If nodes are totally ordered, always step to
smaller node.

Eager Linking

10

8

5

2

1

7

3 4

15

12

6

unite(3, 1): 3, 1, 2, 5, 7, 8, 10, false

0

10

8

5

2

1

7

3 4

15

12

6

unite(0, 1): 9, 1, 2, 5, 6, 8, 10, true

0

10

8

5

2

1

7

3 4

15

12

6

unite(0, 1): 9, 1, 2, 5, 8, 10, true

0

Rem’s algorithm: splicing

Compression or splitting with eager linking?

Yes

Or splice: when taking a step from a node,
change its parent to the current node on the
other path

Can do eager linking (& splicing) by rank

unite by index with splicing

unite(x, y):
{v x; w y;
while v.p ≠ w.p do

{if v.p > w.p then v↔ w;
u v.p;
v.p w.p;
if v = u then return true
else v u};

return false}

10

8

5

2

1

7

3 4

15

12

6

unite(3, 1): 3, 1, 2, 5, 7, 8, 10, false

0

10

8

5

2

1

7

3 4

15

12

6

unite(3, 1): 3, 1, 2, 5, 7, 8, 10, false

0

10

8 5

2 1

7

3 4

15

12

6

unite(3, 1): 3, 1, 2, 5, 7, 8, 10, false

0

10

8

5

2

1

7

3 4

15

12

6

unite(0, 1): 0, 1, 2, 5, 6, 8, 10, true

0

10

8

5

2

1

7

3 4

15

12

6

unite(0, 1): 0, 1, 2, 5, 6, 8, 10, true

0

108 5

21 7

3 4

15

12

6

unite(0, 1): 0, 1, 2, 5, 6, 8, 10, true

0

Path compression with linking by size
(or rank)

History of bounds (amortized time per find)

1971 O(1) (false)

1972 O(lglgn) M. Fisher

1973 O(lg*n) Hopcroft & Ullman

1975 Θ(α(n, m/n)) Tarjan

later Ω(lglgn) (false)

2005 top-down analysis Seidel & Sharir

Ackermann’s function
(Péter & Robinson)

A(0, j) = j + 1

A(k,0) = A(k – 1, 1)

A(k, j) = A(k – 1, A(k, j – 1)) if k > 0, j > 0

A(1, j) = j + 2, A(2, j) = 2j + 3, A(3, j) > 2j, A(4, j) >
tower of j 2’s, A(4, 2) has 19,729 decimal digits

A(k, j) is strictly increasing in both arguments

α(r, d) = min{k > 0|A(k, [d]) > r}

Beautiful Theory…
but Practice?

Experiments: Patwary, Blair, and Manne (2010)

Implementation of Kruskal’s algorithm: only

unites

Two classes of random graphs, and “real-world”

graphs

Results

Linking by index with splicing or splitting
generally best, though by small amounts.

???

Why doesn’t linking by rank (or size) help in
practice?

Randomized linking

Number the elements from 1 to n uniformly at
random, then do linking by index, or eager
linking by index.

Hypothesis: This is what the experiments did, in
effect, on at least the random instances.

May come for free, e. g. if the node names are
hashed.

Equivalent to linking probabilistically by size, not

by flipping a fair coin (50-50 linking).

(Cannot do either eagerly.)

Results
Randomized linking or randomized eager linking
with compression, splicing, or halving, and
randomized eager linking with splicing, take
expected amortized O(α(n, m/n)) time per find.

Tight by Fredman-Saks lower bound.

Not true for 50-50 linking. (We think we have a

proof.)

Key Idea

How to define rank?

Obvious idea: rank = height in tree built by links
with no compaction

Doesn’t seem to handle splicing (not monotonic
in node numbers)

Harder to analyze than our solution

Want:

(i) ranks monotonic in node numbers

(ii) #(nodes of rank ≥ k) ≤ n/2k

Solution: give nodes 1 through n/2 rank 0,

n/2 + 1 through 3n/4 rank 1,

3n/4 +1 through 7n/8 rank 2…

(i) True → x.r ≤ x.p.r (vs. x.r < x.p.r)

(ii) True

(iii) For any node, at least half of higher nodes have

strictly higher rank

Idea of Analysis

Apply an existing analysis of linking by rank to
handle nodes x on find paths with x.r < x.p.r

Bound # nodes x on find paths with x.r = x.p.r

Lemma: For any x, expected # proper ancestors
of x of same rank (in tree built by links with no
compaction) ≤ 2

Proof of lemma: Given a sequence σ of unites
and an element x, reorder σ into σ(x): next unite
adds an element to the set containing x,
breaking ties in order by σ.

With linking by index, σ-ancestors of x are a
subset of σ(x)-ancestors of x;

With early linking by index, ancestor sets are the
same: use recursive characterization of σ(x)

Assume σ = π ◊ ρ, unite(v, w)

where π builds S containing x, ρ builds R,

v in S, w in R, ◊ is arbitrary interleaving

Then σ(x) = π(x), unite(v, w), ρ(w)

(No unite in ρ has a node in S other than v as an
input)

Let u be the root of the current tree containing
x.

Next node u’ added to tree has at least ½ chance
of having rank greater than u.x, given that u’ > u,
by (iii)

→ expected #proper ancestors of same rank as x

≤ ½ + ½ + ⅜ + ¼ +… ≤ 2

→ expected #nodes on find paths with parent of

same rank =O(n)

Splicing

New parent of a node not necessarily an
ancestor

Define zero-level potential of x = # proper
ancestors of same rank: expected total over all
nodes = O(n)

For splitting, need a window of 3 nodes to
analyze find path. For splicing, window is 6

You too can learn/teach the α
bound!

We define x.a, x.b, and x.c, the level, index, and
count of x, as follows:

x.a = max{0, max{k|A(k, x.r) ≤ x.p.r}}

x.b = max{0, max{j|A(x.a + 1, j) ≤ x.p.r}}

x.c = x.a × x.r + x.b

A(α(n, 0), 0) > n → x.a < α(n, 0)

A(x.a + 1, x.r) > x.p.r → x.b < x.r

Σx.c = O(nα(n, 0))

Lemma: If x is followed by y on a find path with

0 < x.r < x.p.r and y.r < y.p.r and x.a = y.a, then
compression of the find path increases x.c.

Proof: A(x.a + 1, x.b + 1) = A(x.a, A(x.a + 1, x.b)

≤ A(x.a, x.p.r) = A(y.a, x.p.r)

≤ A(y.a, y.r) ≤ y.p.r

Hence the increase in x.p.r to at least y.p.r
increases x.a and hence x.c, or does not change
x.a but increases x.b, again increasing x.c

We are still learning…

Thanks!

